Maths formulas for summation of Number Series

This page provides the most important formulas for summation of series of numbers.

Sum up to 'n' natural numbers

Series Compact Result
\(1+2+3+4+...+n\) \(\displaystyle \sum_{i=1}^n r\) \({n(n+1) \over 2}\)
\(1^2+2^2+3^2+4^2+...+n^2\) \(\displaystyle \sum_{i=1}^n r^2\) \({n(n+1)(2n+1) \over 6}\)
\(1^3+2^3+3^3+4^3+...+n^3\) \(\displaystyle \sum_{i=1}^n r^3\) \(\lbrace {n(n+1) \over 2} \rbrace^2\)
\(1^4+2^4+3^4+4^4+...+n^4\) \(\displaystyle \sum_{i=1}^n r^4\) \({n(n+1)(2n+1)(3n^2+3n-1) \over 30}\)
\(1+3+5+7+...+(2n-1)\) \(\displaystyle \sum_{i=1}^n (2r-1)\) \({n^2}\)
\(2+4+6+8+...+2n\) \(\displaystyle \sum_{i=1}^n 2r\) \({n(n+1)}\)



Hope you are helped with it.

Post a Comment